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ABSTRACT

The first on-orbit experiment of the Small Expendable

Deployer System (SEDS) for tethered satellites will

collect telemetry data for tether length, rate of

deployment, and tether tension. The post-flight

analysis will use this data to reconstruct the

deployment history and determine payload position and

tether shape.

Two Kalman estimator algorithms were written, and output

using simulated measurement data was compared. Both

estimators exhibited the same estimated state histories,

indicating that numerical instability in the traditional

algorithm was not the cause of filter divergence.

Estimation of acceleration biases was added, which

reduced the error but did not correct the divergence.

An "add-a-bead" estimator that adds lumped masses as the

tether is deployed was written, which provides a state

model that matches the BEADSIM simulation providing the

"true" measurements and states. This twenty-one bead

estimator produced state histories similar to those of

the two-bead estimator, indicating that the filter

divergence was not caused by a reduced-order model.

The noise models used to date are relatively simple and

may be the source of estimator dlvergence. The

investigation of colored noise models, cross-correlated

measurement and process covariances, and noise-adaptive

filter techniques is recommended.
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INTRODUCTION

A Kalman estimator post-flight data reduction
program has been written to process measurement data
from the Small Expendable-tether Deployment System

(SEDS) experiment to be flown in 1991. The tether will

be deployed from an expendable launch vehicle to a

length of 20 km; it will swing to vertical and then be

cut. Measurement data will be collected and relayed to

the ground to be processed after flight.

The estimator processes length, length rate, and

deployer position and velocity measurements, and

estimates velocities and positions of tether endpoints

and points between. Two algorithms has been developed
for both two and twenty-one bead models, and simulated

measurements have been processed.
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OBJECTIVES

The objective of the summer faculty research was to
continue development of the post-flight data reduction
algorithms started the previous summer.

III-2



STATE MODEL

Several computer simulations of tether deployment

dynamics are available, ranging from planar simple-

pendulum representations to three-dimensional partial-

differential-equation models. Last summer the

investigator had chosen Energy Science Laboratories

(ESL) BEADSIM model to provide the tether dynamics state

equations, since it is relatively simple and yet still

produces results that are comparable to more complex

models. BEADSIM is a lumped mass model, in which masses

or "beads" are added as the tether becomes longer (Fig.

i). No out-of-orbit-plane motion is modelled, and the

external forces on each bead are the gravity gradient,

aerodynamic drag, and Coriolis and centripetal

accelerations. The equations are written using a

Cartesian coordinate frame with an origin at the center

of mass and moving at orbit speed.

(x3,Y3)

,Y2)

Fig. i. BEADSIM lumped mass model.
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Each bead's motion is governed by a second-order
nonlinear differential equation, with a uniform tether
tension providing the coupling between beads. Four
states represent the motion of each bead: the x and y
positions, and the x and y velocities. If we define z
as a vector containing positions and velocities for each
bead, then the state equations may be written as

= F(z,t) + p (1)

where F(z,t) contain the gravity gradient, aerodynamic

drag, and tension forces on each bead, and p is a vector

of process noise. The process noise has been modelled

as white random noise with zero mean and covariance
matrix

Q = E( p pT) =

_i 2 0 0 ... 0

0 o22 0 . . . 0

2
0 0 0 ... oN

(2)

where E is the expected value.

The SED_ measurements consist of tether length i,

length rate i, and the deployer position and velocity.
These measurements are nonlinear functions of the

states, represented by the following measurement

equations

1 = G(z) + 9 (3)

where 1 represents the vector of measurements at a given

time, z the corresponding states, and 9 a vector of

measurement noise. The measurement noise has been

modelled as white with zero mean and covariance matrix

R = E(9 9T) =
yl 0 0 . . . 0

%,22 0 . . . 0

[ 0 0 0 ... ym 2

(4)

STATE ESTIMATORS

The measurements are not the same variables as the

states, so that payload position and tether shape cannot

be directly determined from the measurements. A state

estimator uses the measurements as input, filter the

measurement noise, and then output the values of the

states. Two estimator algorithms have been developed:

I II-4



the traditional Kalman estimator algorithm, and the U-D
square-root factorization technique. Both estimators
process simulated measurements generated by BEADSIM to
which white noise is added.

Estimators for dynamic systems were developed
primarily for linear systems; for nonlinear systems
represented by equations (i) and (3), an extended Kalman
estimator is used. The nonlinear equations are used for
state and measurement prediction at the next time step,
and the state correction is calculated using a local
linearization of these equations. The linearization of
equations (i) and (3) are

z = Az + p (5

and

1 = Hz + _ (6

where

@G
H = --

8z Zcurren t

8F I

A = -- I
d

8z IZcurrent

(7

(8)

The estimators correct the predicted states at each time

step by multiplying the error between the actual

measurement and the predicted measurement by a gain

matrix. This gain matrix is calculated using the

measurement covariance matrix and an extrapolated state

estimate covariance, which is based on the linearized

system's state transition matrix. The state transition

matrix @(t2,t I) for equation (5) is the transformation

that takes the state z I at time t I into the later state

z2

z 2 = @(t2,tl)z I (9)

For linear systems, the state transition matrix obeys

the same differential equation as the states themselves

@(t) = A@(t) (10)

and can be integrated forward in time along with the

state equations. For nonlinear systelns, however,

equation (i0) is a linearized approximation valid only
III-5



in a neighborhood of the current state value. A
comparison of the linearized and nonlinear state and
measurement values indicates that a time-step size of
one second produces four decimal digit agreement during
deployment, and hence measurements will be processed at
one-second intervals.

SIMULATION RESULTS

Traditional Kalman algorithm

The traditional Kalman algorithm using a two-bead

model was developed in the summer of 1988. Payload

position and velocity estimates are shown in Figs. 2 and

3, in which the solid line is the BEADSIM deployment and

the dashed line is the estimator output. Fig. 4

contains the tether length and length rate during

deployment, and Fig. 5 shows the rms position and

velocity errors for the payload. This algorithm uses

the identity matrix for the initial state covariance

estimate, and propagates the covariance estimates with

no checks on element values. Note that the payload

position error reaches a maximum of 1500 m using this

algorithm.

Filter divergence in many cases is due to overly

optimistic covariance estimates, in which the algorithm

depends heavily on the state prediction, and tends to

reject the measurement data corrections. One way to

treat filter divergence is to monitor the covariance

estimates and reinitialize this matrix if the diagonal

elements fall below a set threshold. Figs. 6 and 7 show

the deployer and payload position and velocity errors

using reinitialization of the state covariance matrix.

The payload position error now has a maximum of 300 m.

Similar results can be attained by increasing the

estimates of the process noise.

Criticism of the traditional Kalman algorithm

includes numerical instability, which can produce filter

divergence such as that shown in Figs. 2 through 5, and

that process-noise adjustments or reinitialization of

the covariance matrix may tune the filter to produce any

output desired, whether it is reasonable or not. The U-

D square-root factorization algorithm provides an

alternative method for Kalman estimation, and is

considered a more numerically-stable method.

U-D Factorization Algorithm

The U-D factorization algorithm is computationally

slower than the traditional Kalman algorithm, but in

many cases produces more reliable results. The same

two-bead model was used for state and covariance
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propagation, and the U-D algorithm produced estimates
similar to those of the untuned traditional algorithm
(Figs. 2 through 5). The estimation of acceleration
biases due to aerodynamic drag on the deployer and
payload improved these results. This algorithm produced
the tether length and length rate history shown in Fig.
8, and payload position and deployer position rms errors
shown in Fig. 9.

To determine the magnitude of errors associated
with the two-bead model, a twenty-one bead model and
estimator was developed. This estimator starts with two
beads, and adds beads for every I000 m of tether
deployed, similar to the BEADSIM simulation. Figs. i0
and ii show the length, length rate, payload position
and deployer position rms errors for the twenty-one bead
estimator. Comparison between Figs. 9 and ii indicates
that little improvement was obtained by using the
twenty-one bead estimator, and that the filter errors do
not occur due to the reduced-order model.
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Fig. 2. Estimated payload position using

untuned traditional Kalman algorithm.
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Fig. 3. Estimated payload velocity using

untuned traditional Kalman algorithm.
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CONCLUSIONS AND RECOMMENDATIONS

The untuned traditional Kalman estimator using two-

beads produced state estimates that diverged from the

"true" state values during deployment. By monitoring

the state covariance matrix, we found that the estimated

variances became unacceptably small, so that measurement

information was being ignored by the algorithm, and the

estimates from the state equations were favored. Tuning

this algorithm by adjustment of the process noise levels

or by reinitialization of the covariance matrix during

deployment reduced this divergence, but these techniques

may be unreliable for flight-data use. The estimator

divergence may come from a variety of sources: numerical

instability in the traditional algorithm, errors from

ignoring acceleration biases, modelling errors from

using a two-bead model, linearization errors,

measurement and process noise models that are not

accurate, or incorrect apriori covariance estimates.

To determine if numerical instability was a primary

cause of filter divergence, the U-D factorization

algorithm was programmed. Similar estimates were

obtained from both methods using the two-bead model,

indicating that errors in the traditional algorithm are

not due to numerical instability. Estimation of

acceleration biases, which occur primarily due to

aerodynamic drag, reduced the estimator errors. The

"add-a-bead" estimator that reproduces the BEADSIM state

model produced estimates that were very similar to those

of the two-bead model, indicating that filter divergence
is not due to a reduced-order model.

Linearization errors in the A and H matrices of

equations (7) and (8) have been monitored by comparison

with the actual states and their derivatives, and

calculations have agreed to four decimal digits. This

linearization directly impacts the gain calculation and

the propagation of the state covariance matrix, and

could be the source of filter divergence. The

measurement and process noise models used in these

calculations have been white, Gaussian, with zero mean;

the linearization errors are by definition colored,

since they are the product of a dynamic process. A
correlation calculation of both the measurements and

states produced by the estimator indicates that they are

both correlated, and yet these algorithms have not used

off--diagonal elements in the covariance matrices. Both

estimators are sensitive to changes in the apriori

covariance estimates; in some cases, the U-D
III-15



factorization algorithm overflows early in deployment
when large initial covariance estimates are used.

Recommendations include the use of cross-
correlation terms in the covariance matrices, which is
easily accomodated by the traditional Kalman algorithm.
Since the linearization of the state and measurement
equations most likely pollute the white noise models for
the process and measurement noise, a Gauss-Markov model
should be developed for these processes. The time-
sequence of linearization errors for both the
measurements and state derivatives could be saved, and
the correlation matrices calculated for both. The time-
varying correlation matrix for the process noise would
provide the transition matrix Ak_1 for a shaping filter
of the form

Pk = Ak-lPk-i + Ek-i (ii)

where Pk is the colored process noise sequence and Ek is
white-noise. The same calculations could be done to

provide a colored noise model for the measurement

linearization errors. (see Stengel).

Noise-adaptive filtering techniques may be

necessary when apriori covariance estimates are not

accurate. These techniques sample the measurement

residuals and calculate measurement biases and

covariances; similar techniques can be used to give
better estimates of an initial state covariance matrix.

(see Myers and Tapley).
v'
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